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A method is given to invert the multiple scattering of electrons in a crystalline

slab to obtain the projected potential. For a ®xed orientation of the incident

beam of electrons, scattering data are required for two thicknesses of the crystal.

1. Introduction

The inversion of dynamical (multiple) scattering in high-resolution

transmission electron microscopy was identi®ed as recently as 1997,

in a review article by Smith (1997), as `unquestionably the major

unresolved problem confronting the ®eld of atomic resolution

microscopy'. Solutions to the inversion problem have subsequently

been given by Spence (1998) and independently by Allen and co-

workers (Allen et al., 1998, 1999, 2000). For a crystalline slab of ®xed

thickness and working at a ®xed incident energy within an N-beam

approximation, the exit-surface wavefunction must be determined for

a well de®ned set of N incident-beam orientations. For zone-axis

conditions, N is typically of the order of 100. Retrieval of exit-surface

wavefunctions using images implies a loss of resolution. Within a

linear imaging approximation, it has recently been shown how to

extend the resolution by using, in addition, a high-resolution

diffraction pattern (Chen et al., 1999). To be useful under multiple

scattering conditions, the linear imaging constraint needs to be

removed, e.g. using a combination of the through-focal series and

Gerchberg±Saxton algorithms (Allen et al., 2001). Here we will show

that, for a ®xed incident energy, the dynamical inversion problem can

be solved by obtaining the exit-surface wavefunction for two different

thicknesses at a single orientation.

2. Theory

The fundamental wave equation that describes the scattering of

electrons in a crystalline slab is the SchroÈ dinger equation:

�r2 � U�r� � K2�	�r� � 0: �1�

Here U�r� is the potential in the crystal and K is the wavenumber

of the incident electrons corrected for refraction, i.e. K2 � k2 � U0,

where U0 is the mean inner potential. The wavenumber k in vacuum

is related to the wavelength of the incoming electrons by k � 2�=�.

Let us assume that the xy plane coincides with the entrance surface

of the crystal and that the electron beam is incident along the z axis.

Considering the wavefunction to be a modi®cation of an incident

plane wave, we write

	�r� � exp�iK � r���r�; �2�

which has the effect of factoring out the rapid variation in 	�r� along

the z direction. Writing r � �r?; z� and substituting (2) into (1), we

obtain

�r2
? � U�r?; z����r?; z��cryst� � ÿ2iK@z��r?; z�??�cryst�; �3�

where r? operates in the xy plane, @z denotes a partial derivative

with respect to z and we have assumed that @2
z� ' 0 (paraxial

approximation). For propagation through free space, the corre-

sponding equation is

r2
?��r?; z��free� � ÿ2ik@z��r?; z�??�free�: �4�

At the exit surface of the crystalline slab of thickness t,

��r?; t��cryst� � ��r?; t��free� � ��r?; t�. Assuming incident electron

energies of hundreds of keV, K ' k to high accuracy. Then, using (3)

and (4) we obtain

U�r?; t� � ÿ2ik
@z��r?; z����z�t; cryst:� ÿ @z��r?; z����z�t; free�

��r?; t�

" #
: �5�

We now note the fact that r2
? � ÿFÿ1q2

?F , where F denotes a

Fourier transform and q? is the variable conjugate to r? in the

Fourier space [we have used formula 33.20 in Spiegel (1968)]. Then

from (4) we see that we may write

@z��r?; z����z�t; free� �
1

2ik
Fÿ1q2

?F��r?; t�: �6�

Using (6) and approximating the derivative in the crystal in terms of

the wavefunctions at two planes a distance �t apart, we can rewrite

(5) in the form

U�r?; t� � 2ik

�t
1ÿ��r?; t ��t�

��r?; t�
� �

� F
ÿ1q2
?F��r?; t�

��r?; t� : �7�

This gives the (projected) potential over the slice between t and

t ��t (which for a perfect crystal is the projected potential for the

crystal). A crucial issue in using (7) to construct the potential is that

we must be able to correctly phase the wavefunctions retrieved for

thicknesses t and t ��t relative to each other. In retrieving the exit-

surface wavefunction at each thickness, the phase can only be

determined up to an arbitrary overall constant. Assume that the

wavefunction retrieved at t ��t (indicated by a prime) is related

to that which is correctly phased relative to the wave function at

t by �0�r?; t ��t� � ��r?; t ��t� exp�ÿi��. For conditions where
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absorptive effects are small, the potential U�r?; t� is real and this

implies that we must have

Re
�0�r?; t ��t� exp�i�� � i�t=�2k�Fÿ1q2

?F��r?; t�
��r?; t�

� �
� 1: �8�

This constraint could be used in an approximate way in the presence

of absorption.

Care has to be taken in evaluating the potential at points where

��r?; t� is small or has zeros. This can be achieved by avoiding

thicknesses where such features are evident in the exit-surface images

or by using numerical regularization. The difference between the two

thicknesses �t needs to be accurately determined, for example using

convergent-beam electron diffraction (Williams & Carter, 1996). We

note also that an effective change in thickness of the sample can be

obtained by varying the voltage of the incident beam (Rez, 1999).

3. Model example

Let us illustrate the inversion of the multiple scattering using a model

example. Consider 200 keV electrons incident along the �110� zone

axis in GaAs at room temperature. Figs. 1(a) and (b) show the exit-

surface image and phase calculated in an N � 27 beam approxima-

tion for a thickness of 200 AÊ . The image and phase for a thickness of

250 AÊ are shown in Figs. 1(c) and (d), where intensity zeros in the

image with corresponding vortices in the phase are evident (this does

not occur at 200 AÊ ). A vortex, joined to a counter rotating partner by

a branch line, is indicated by the arrow in (d). We have checked that

(8) retrieves � correctly. As �t increases, a further component in �
arises due to inaccuracies in the estimation of the derivative of the

wavefunction in the crystal. For example, adding a constant phase of

1.9 rad to the phases in Fig. 1(b), we retrieve a value for � of 1.76 rad.

The potential then constructed from these two exit-surface wave-

functions is shown in Fig. 1(e). The input model potential calculated

using the 27 Fourier coef®cients corresponding to the reciprocal-

lattice vectors de®ning our 27-beam approximation (with maximum

magnitude 5.44 AÊ ÿ1) is shown in Fig. 1( f ) for purposes of compari-

son. Information on higher-order Fourier coef®cients is not retrieved,

as is the case in a 27-beam approximation using inversion methods

based on a through-tilt series of measurements (Spence, 1998; Allen

et al., 1998, 1999, 2000). For t � 200 AÊ , the exit-surface image and the

potential do not show similar contrast, due to multiple scattering.

However, the potential retrieved using (7) and (8) is in good agree-

ment with the corresponding model potential ± there is in fact a

damping of the potential (maximum range reduced by 84%), which

becomes smaller as �t is reduced. A reasonable (but further damped)

representation of the projected potential is still obtained for

�t � 100 AÊ .

4. Conclusions

A method has been given to invert the multiple scattering in many-

beam dynamical electron diffraction to obtain the crystal potential.

Scattering data are required for two thicknesses of the crystalline slab

for a ®xed orientation of the beam. The difference in thickness �t

needs to be accurately known. For nonperiodic objects, this approach

provides the projected potential between the two thicknesses.
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Figure 1
Shown in (a) and (b) are the exit surface image and phase along the �110� zone axis
for a 200 AÊ thick slab of GaAs. The image and phase for a thickness of 250 AÊ are
shown in (c) and (d). The reconstructed potential is shown in (e). The input model
potential is shown in ( f ). The arrow in (d) indicates a vortex in the phase.


